

Update on the global situation of antimicrobial resistance. Impact of COVID-19

Jordi Vila
Department of Clinical Microbiology
Hospital Clinic
Barcelona

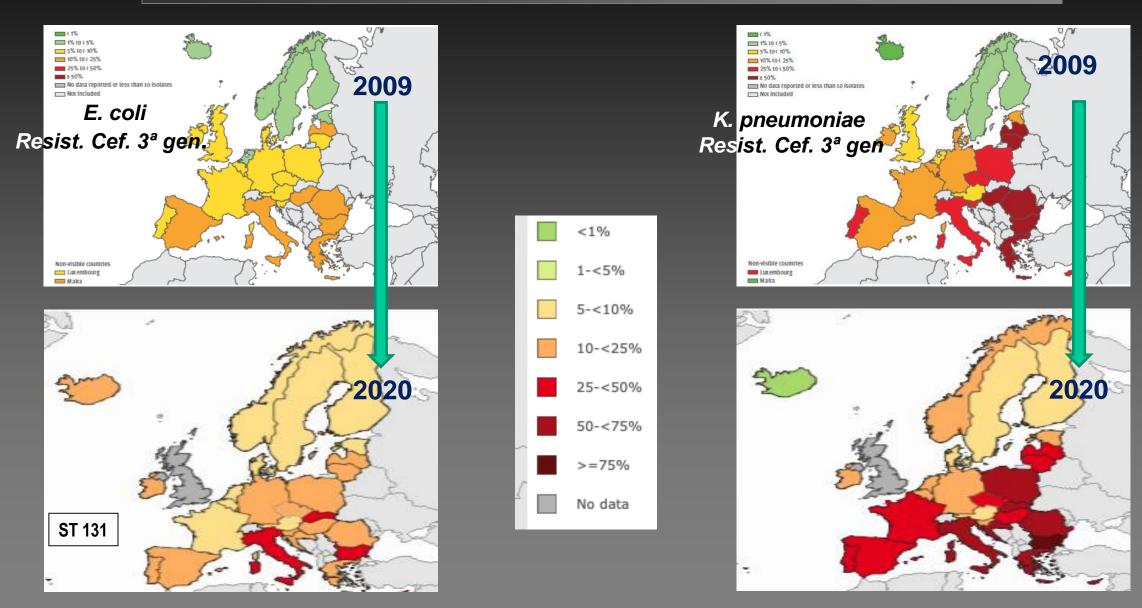
WHO PRIORITY PATHOGENS FOR R&D OF NEW ANTIBIOTICS March 2017

Priority 1: CRITICAL#

Acinetobacter baumannii, carbapenem-resistant

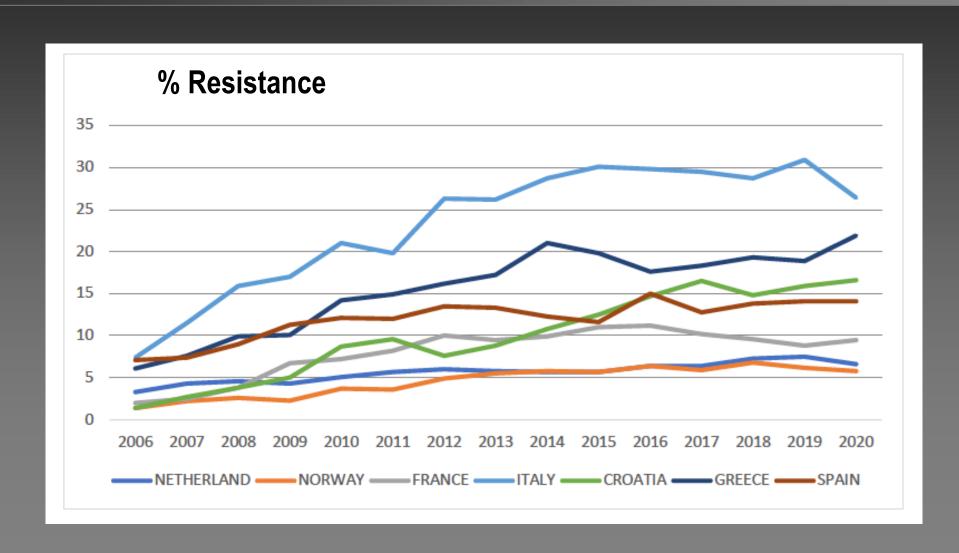
Pseudomonas aeruginosa, carbapenem-resistant

Enterobacteriaceae*, carbapenem-resistant, 3rd generation cephalosporin-resistant

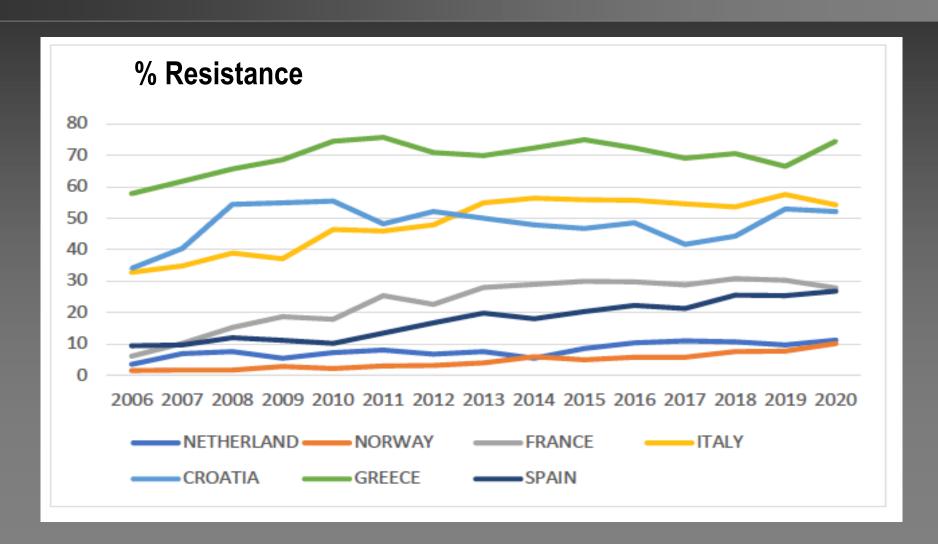

MAIN RESISTANT MICROORGANISMS

- Extended-spectrum β-lactamase (ESBL)-producing
 Enterobacterales
- Carbapenem-resistance Enterobacterales
- Pseudomonas aeruginosa and Acinetobacter baumannii multi, extensively and pandrug resistant

MAIN RESISTANT MICROORGANISMS


- Extended-spectrum β-lactamase (ESBL)-producing
 Enterobacterales
- Carbapenem-resistance Enterobacterales
- Pseudomonas aeruginosa and Acinetobacter baumannii multi, extensively and pandrug resistant

Enterobacteriales: ESBL


Evolution of AR in different countries in Europe

ESBL producing E. coli

Evolution of AR in different countries in Europe

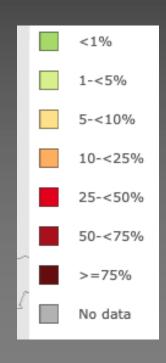
ESBL producing K. pneumoniae

MAIN RESISTANT MICROORGANISMS

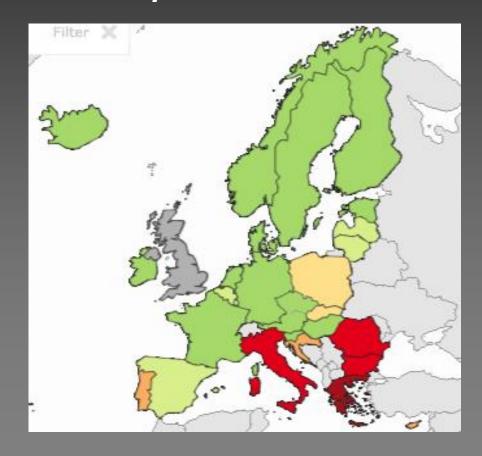
- Extended-spectrum β-lactamase (ESBL)-producing
 Enterobacterales
- Carbapenem-resistance Enterobacterales
- Pseudomonas aeruginosa and Acinetobacter baumannii multi, extensively and pandrug resistant

Carbapenemases

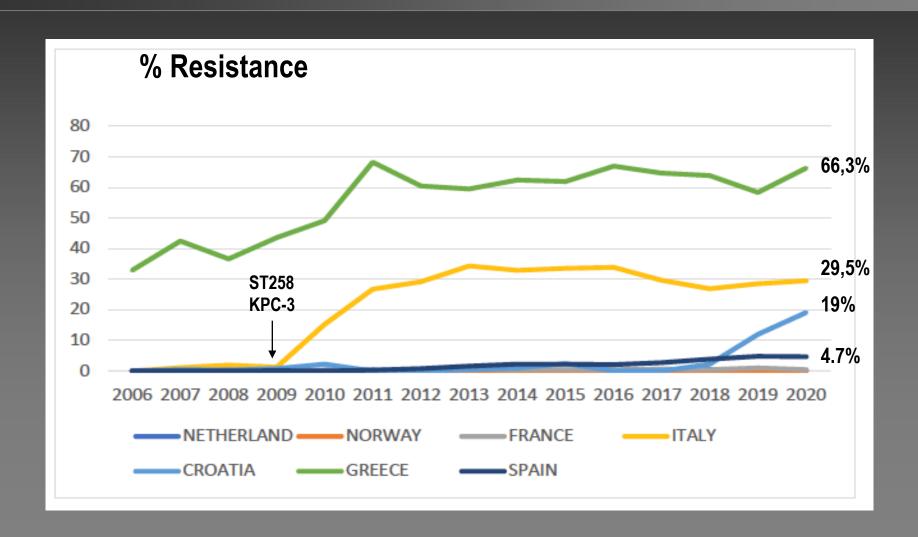
Class	Туре	Clavulanic ac. inh.	EDTA	Susceptibility to ATM	Genetic location
	GES	+	-	S	Р
٨	IMI	+	-	R	С
A	SME	+	-	R	С
	KPC	+	-	R	P
	NDM	-	+	S	C/P
В	VIM	-	+	S	C/P
	IMP	-	+	S	C/P
D	OXA	+/-	-	S	C/P


Enterobacteriales: carbapenemases

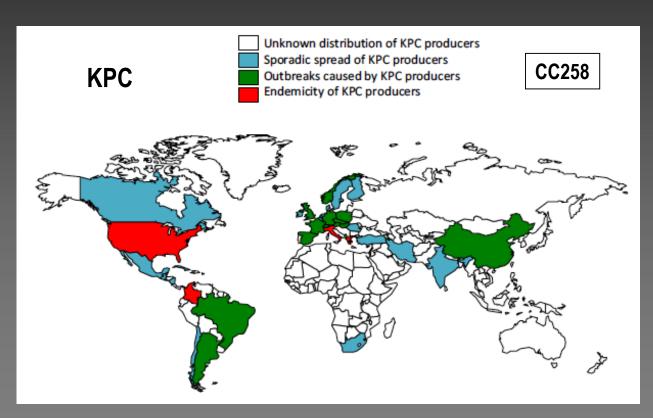
Resistance to carbapenems

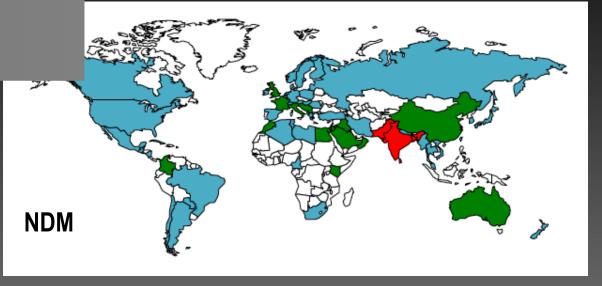

E. coli

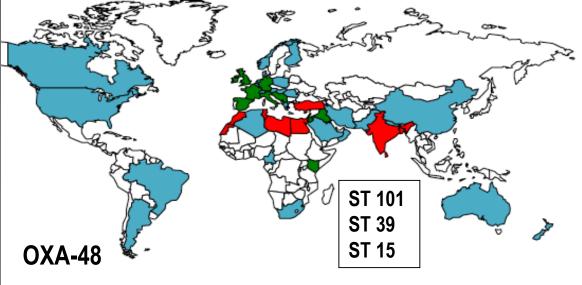
2020



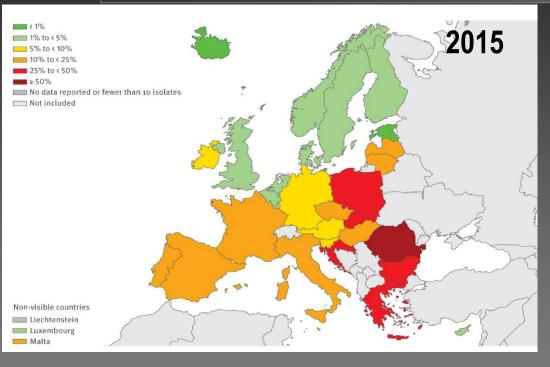
K. pneumoniae

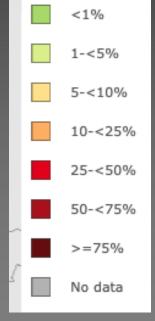


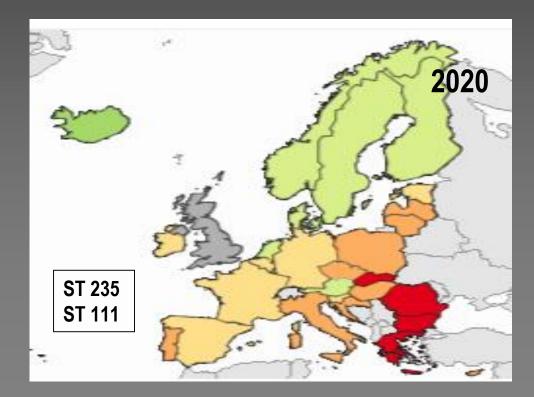

Evolution of AR in different countries in Europe


Carbapenemase producing K. pneumoniae

Global dissemination of carbapenemases




MAIN RESISTANT MICROORGANISMS


- Extended-spectrum β-lactamase (ESBL)-producing Enterobacterales
- Carbapenem-resistance Enterobacterales
- Pseudomonas aeruginosa and Acinetobacter baumannii multi, extensively and pandrug resistant

Multidrug resistant P. aeruginosa EARSS-Net report

3,3 % in Denmark
55,4% in Romania
21,8% in Spain
Overall mean in Europe 16,5%

MAIN RESISTANT MICROORGANISMS

- Extended-spectrum β-lactamase (ESBL)-producing *Enterobacterales*
- Carbapenem-resistance Enterobacterales
- Pseudomonas aeruginosa and Acinetobacter baumannii multi, extensively and pandrug resistant

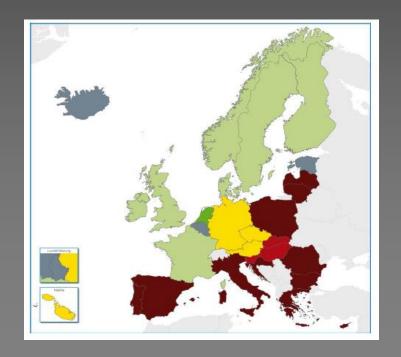
Evolución de la resistencia en Acinetobacter baumannii

Antibiotic	GEIH-Ab 2000 (n=221) %	GEIH-Ab 2010 (n=446) %	Difference	p value
Piperacillin	93	94	1	0.74
Ceftazidime	83	99	16	0.000
Sulbactam	53	65	12	0.0042
Imipenem	48	82	34	0.000
Meropenem	43	83	40	0.000
Doripenem	NT	86	ND	ND
Gentamicin	96	70	-27	0.000
Tobramycin	79	60	-19	0.0001
Amikacin	65	49	-17	0.0001
Tetracycline	91	83	-8	0.0096
Doxycyline	68	70	2	0.53
Minocycline	34	30	-4	0.30
Tigecycline	NT	23.9	ND	ND
Ciprofloxacin	98	94	-5	0.0074
Rifampicin	51	30	-21	0.000
Colistin	0	3	3	0.000

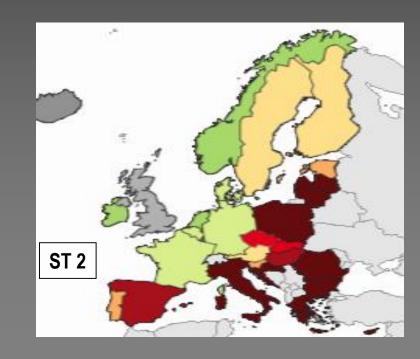
MDR: 98%

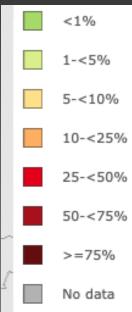
XDR: 86 %

PDR: 2 %


NT: no probado, ND: no determinado

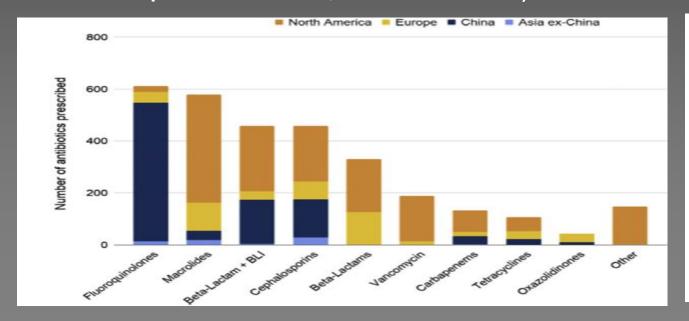
Multidrug resistance in A. baumannii

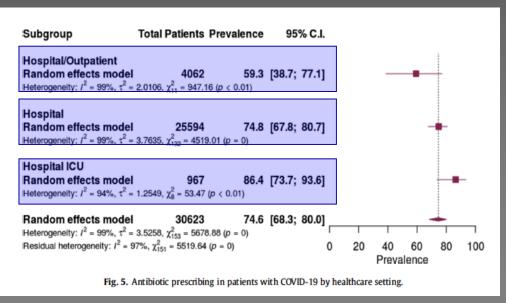

EARSS-Net report


Acinetobacter spp. resistant to carbapenems

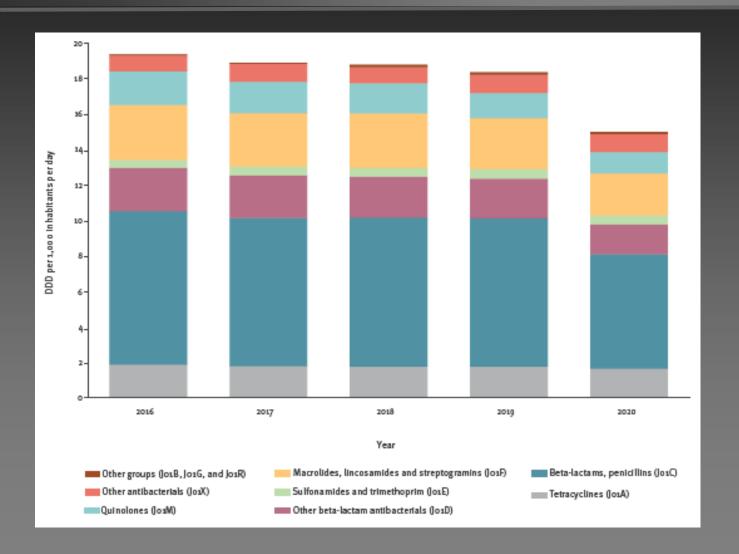
2014

2019



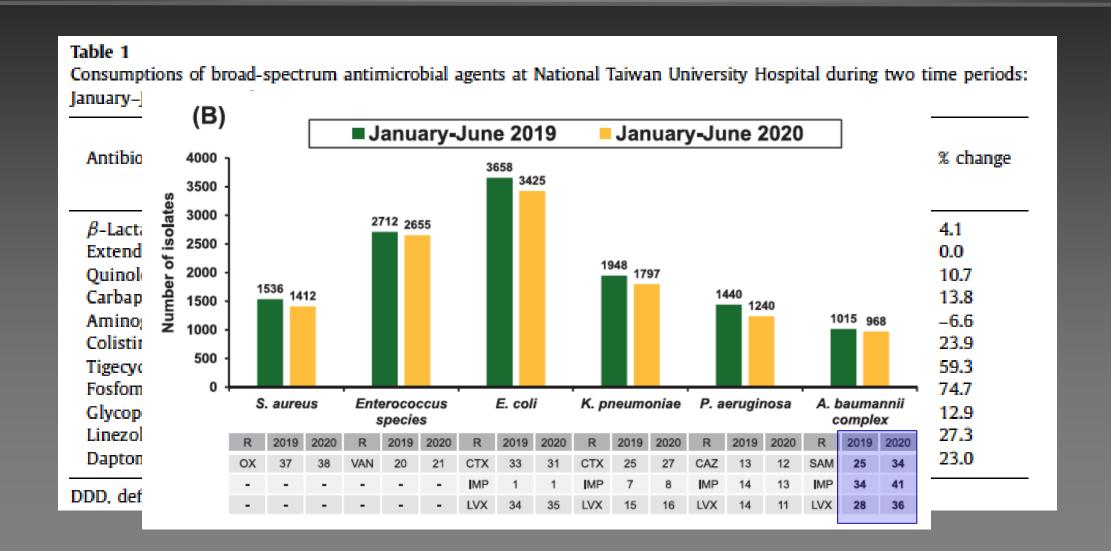


COVID-19 - ANTIBIOTIC RESISTANCE.


Langford, B et al: Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis Clinical Microbiology and Infections 2021; 27: 520

- Antibiotic use data were available for 30,623 patients.
- The prevalence of antibiotic prescription was 74.6% (95% CI 68.3 and 80.0%).
- In the univariate meta-regression, the prescription of antibiotics was lower in children (odds ratio for prescribing prevalence (OR) 0.10, 95% CI 0.03e0.33) compared to adults.
- The prescription of antibiotics was higher with increasing age of the patient (OR 1.45 per 10-year increase, 95% CI 1.18 to 1.77) and higher with an increasing proportion of patients requiring mechanical ventilation (OR 1.33 per 10% increase, 95% CI 1.15 e1.54).

Diaz Högberg, L et al: Decrease in community antibiotic consumption during the COVID-19 pandemic, EU/EEA, 2020 Euro Surveillance 2021; 26: pii=2101020.

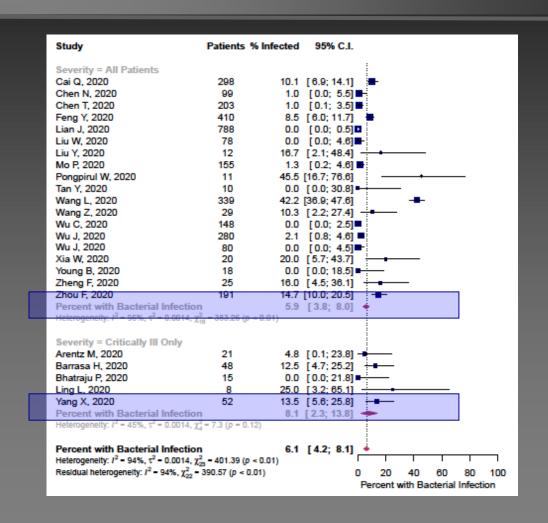


It is still unclear whether this reduced community antibiotic consumption was sustained throughout 2021 and what implications it may have on antibiotic resistance

Knight, BD et al: The impact of COVID-19 on community antibiotic use in Canada: an ecological study Clinical Microbiology and Infection 2021; in press

	Antibiotic prescriptions dispensed per 1000 inhabitants					
Month	2019	2020	Percent change (2019–2020)			
January	60.03	61.33	2,17			
February	49.68	50.62	1.89			
March	54.71	48.38	-11.57			
April	53.96	33.42	-38.07			
May	52.73	31.87	-39.56			
June	46.72	35.18	-24.70			
July	47.49	36.88	-22.34			
August	45.23	35.58	-21.34			
September	47.94	36.83	-23.18			
October	54.21	38.06	-29.79			
Average (March to October)	50.37	37.03	-26.50			

Lai L et al. Increased antimicrobial resistance during the COVID-19 pandemic Infernational Journal of Antimicrobial Agents (2021) 57:106324


CO-INFECTIONS IN PATIENTS WITH COVID-19

Population	Country	Nº co-infections	Treatment	Ref.
99	China	2/99 (2%)	70/99 (70%)	Lancet (20) 395:507
29 / 69	China	5/29 (17%)	66/69 (95%)	CID (20) ciaa272
41	China	4/41 (9.7%)	41/41(100%)	Lancet (20) 395:497
191	China	28/191 (14.6%)	181/191 (94.7%)	Lancet (20) 395:1054
92	France	26/92 (28%)	SARM 31%	Ann Inten Care (20) 10:119
836	UK	26/836 (3.2%)		CMI (20) 26:1395
338	USA	19/338 (5.6%)		NEJM (20) 382:8732
21	USA	1/21 (4.7%)	pacientes de UCI	JAMA (20) 323:1612
1396	UK	37/1396 (2.7%)	97.8%	JAC (21) 76:796

Langford, B et al: Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis

Clinical Microbiology and Infections 2021; 26: 1622

Study	Patients 9	6 Infected	95% C.I.					
Category = Co-infection								
Arentz M. 2020	21	4.8	[0.1; 23.8]	ı -				
Barrasa H. 2020	48		[4.7; 25.2]		_			
Bhatraju P. 2020	15		[0.0; 21.8]					
Chen N. 2020	99		[0.0; 5.5]					
Chen T. 2020	203		[0.1; 3.5]					
Liu W. 2020	78		[0.0; 4.6]					
Liu Y. 2020	12		[2.1; 48.4]					
Mo P. 2020	155		[0.2; 4.6]					
Pongpirul W, 2020	11		[16.7; 76.6]		-		_	
Tan Y, 2020	10		[0.0; 30.8]		_			
Wang Z, 2020	29	10.3	[2.2; 27.4]		_			
Wu C, 2020	148	0.0	[0.0; 2.5]					
Wu J, 2020	280	2.1	[0.8; 4.6]					
Wu J, 2020	80	0.0	[0.0; 4.5]	-				
Xia W, 2020	20	20.0	[5.7; 43.7]	 •				
Young B, 2020	18	0.0	[0.0; 18.5]	-				
Zheng F, 2020	25		[4.5; 36.1]		_			
Percent with Bacterial Infection			[0.4; 6.7]	•				
Heterogeneity: $t^2 = 57\%$, $\tau^2 = 0.0029$, χ^2	₁₆ = 36.86 (p <	0.01)					•	
Category = Secondary								
Cai Q, 2020	298		[6.9; 14.1]					
Feng Y, 2020	410		[6.0; 11.7]					
Lian J, 2020	788		[0.0; 0.5]					
Ling L, 2020	8		[3.2; 65.1]					
Wang L, 2020	339		[36.9; 47.6]		-			
Yang X, 2020	52		[5.6; 25.8]		_			
Zhou F, 2020 Percent with Bacterial Infection	191		[10.0; 20.5]					
Heterogeneity: I^2 = 98%, τ^2 = 0.0029, χ			[9.6; 18.9]	_				
Treatingenetry. 17 - 30%, 17 - 0.0029, 7,	6 - 300.33 (p <	u.u1)						
Percent with Bacterial Infection		6.0	[4.3; 9.5]	. I				
Heterogeneity: I^2 = 94%, τ^2 = 0.0029, χ^2			[4.5, 5.5]	' —			\neg	\neg
Residual heterogeneity: I^2 = 94%, χ^2_{22} =				0 20	40	60	80	100
		/			twith Ba			
				, crock		and the same		

Garcia-Vidal, C et al: Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study Clinical Microbiology and Infections 2021; 27: 83

Bacterial co-infection	n/N (%)
Infection at COVID-19 diagnosis	30/74 (40.5
Community-acquired pneumonia co-infection	21/30 (70)
Streptococcus pneumoniae	12/21 (57.1
Staphylococcus aureus	6/21 (28,6)
Haemophilus influenzae	2/21 (9.5)
Moraxella catarrhalis	1/21 (4.8)
Lower respiratory co-infection in patients with bronchiectasis	2/30 (6.6)
Pseudomonas aeruginosa	2/2 (100)
Concurrent urinary tract infection	7/30 (23,3)
Escherichia coli	1/7 (14.2)
Klebsiella pneumoniae	1/7 (14.2)
Enterococcus faecium	1/7 (14.2)
Proteus mirabilis	1/7 (14,2)
Citrobacter koseri	1/7 (14.2)
S. aureus	1/7 (14,2)
Hospital-acquired superinfections complicating patients admitted for COVID-19	44/74 (59.5
/entilator-associated pneumonia	11/44 (25)
S. aureus	4/11 (36.4)
P. aeruginosa	3/11 (27.3)
Stenotrophomonas maltophilia	2/11 (18.2)
K, pneumoniae	1/11 (9)
Serratia marcescens	1/11 (9)
Hospital-acquired pneumonia	4/44 (9)
S, aureus	1/4 (25)
P. aeruginosa	1/4 (25)
S. maltophilia	1/4 (25)
K. pneumoniae	1/4 (25)
Bacteraemia	16/44 (36.3
Coagulase-negative staphylococci	7/16 (43.7)
P. aeruginosa	3/16 (18.7)
E, faecium	3/16 (18.7)
E, coli	2/16 (12.5)
Streptococcus anginosus	1/16 (6.2)
Urinary tract infection	12/44 (27.3
E, coli	4/12 (33.5)
K. pneumoniae	3/12 (25)
Enterococcus faecalis	2/12 (16.7)
E. faecium	1/12 (8.3)
P. aeruginosa	1/12 (8.3)
S. marcescens	1/12 (8.3)
Polymicrobial intra-abdominal infection (E. coli, E. faecium, E. faecalis)	1/44 (2.3)

- 989 adults admitted with COVID-19 (Spain) for more than 48 hours, 7.4% co-infection (S. pneumoniae (16.2%); S. aureus (16.2%), P. aeruginosa (13.5%), E. coli (9.5%), K. pneumoniae (8.1%), E. faecium (5.4%) and H. influenza (2.7%)
- S. pneumoniae and H. influenza were associated with community acquired pneumonia while S. aureus was associated with CAP and HAP.

Impact of COVID on AMR

- Emergence of multi-resistant bacteria
 - Overprescribing antibiotics
 - Limited resources
- Spread of multi-resistant bacteria
 - Strict lockdown
 - Social distancing
 - Extensive implementation of hand hygiene and masks at both the health center and community levels
 - Limitation of international travel and migration

Thanks Gracies Gracias

