

MARKET ANALYSIS Low and Middle Income Countries

ORIOL CUXART, IESE Business School

30.11.2021

Global spread of resistances

Worldwide travel routes and emergence of antimicrobial resistance

Promotes Spread – proliferation – genes sharing

One health approach needed

Holmes et al. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387

Where will the impact be greater if no action is taken?

A worrisome future?

Deaths attributable to AMR every year by 2050

The Needs

Gardp Report 2018: *"Low-and middle-income countries already bear significantly higher resistance rates (40-60%) compared to an average of 17% for OECD countries".*

Over the counter sales of drugs, including last resort antibiotics. What does it lead to? → over-use and mis-use of ABs

Addressing AMR is key to deliver the SDGs, the Sustainable Development Goals.

Mendelsonet al. (2016). Maximising access to achieve appropriate human antimicrobial use in low-income and middle-income countries. The Lancet, 387

Detection in 30 min

MARKET

LMICs

ANALYSIS IN

AMRDETECTOOL

Benin, West Africa

The Needs

RDFTFC**TOOL**

Suboptimal rapid diagnostics Mis-use and over-use

- Fear of missing a bacterial infection
- Availability of antibiotics over the counter
- Under-use or Lack of Access to diagnostics reasons:
 - Due to long turnaround times and poor clinical performances
 - Affordability issues
 - Supply problems
 - **Quality** assurance

Detection in 30 min

Holmes et al. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387

Technological needs

Affordability \rightarrow technological gap, exacerbated by the technological improvements in HICs.

Expensive, require sophisticated laboratories with significant infrastructure, consistent electricity, climate control and refrigeration, and well-trained laboratory technicians

MALDI-TOF

LMICs – equipment's and technologies that date from the late **1800s**: **traditional culture** –based techniques

Manual blood culture

MARKET ANALYSIS IN LMICs

Technological needs

		High income country	Low-income country
	Culture-based growth	Automated blood culture systems with continuous growth monitoring and automated detection	Manual blood cultures. Automated equipment rarely used because of high cost and stringent requirements for infrastructure; service contracts are unavailable or unaffordable in many settings;
	Identification	MALDI-TOF . Identification systems validated with bacterial collections obtained in high-resource settings	MALDI-TOF rarely used. Identification methods not validated with bacterial collections from low-resource settings; some tropical bacteria cannot be reliably identified with commercial identification methods
MARKET ANALYSIS IN LMICs	AST	Harmonised criteria by international guidelines (CLSI, EUCAST) integrated in automated antimicrobial susceptibility testing methods assuring correct and updated use of breakpoints and expert rules	Guidelines are often temporary, not well disseminated, only available in English, and poorly followed; expert rules are too complicated to be mastered by staff without expertise in microbiology

Detection in 30 min

MRDETEC**TOOL**

Ombelet, et al. Clinical bacteriology in low-resource settings: today's solutions. The Lancet Infectious Diseases (2018)

Challenges to be addressed

Factors unlikely to change in short term:

- Supply problems
- Lack of microbiology experts
- Environmental conditions
- Power outages
- Low budgets

LANCET, 2018*: Need of developing rapid diagnostic devices:

- Low tech (easy to use and interpret)
- Low cost
- Low maintenance
- Little waste
- Electricity free or consume Little energy
- Specific and sensible

Does that sound familiar?

Detection in 30 min

AMRDETECTOOL

*Ombelet, et al. Clinical bacteriology in low-resource settings: today's solutions. The Lancet Infectious Diseases (2018)

AMR DetecTool features

Inexpensive \checkmark Easy to use \checkmark Fast \checkmark No extra equipment needed, low fingerprint \checkmark Interpretability \checkmark Clinically accurate \checkmark Electricity free \checkmark

AMR tests in LMICs

- Little active screening of resistances, mainly for surveillance purposes in some reference laboratories → AMR DetecTool represents an extra cost
- Resistances detected late in the workflow, at AST (MIC or Disk diffusion)

RDETEC**TOOL**

• Implications in Market size studies

MIC

Disk diffusion

MARKET ANALYSIS IN LMICs

Market opportunity for AMR DetecTool

RDETEC**TOOL**

What are the main factors?

- Affordability
- Prevalence

Detection in 30 min

- Access to antibiotics
- Fit into workflows and infrastructure
- National AMR plans and stewardship programs

Top-down approach

LMICs classification (World Bank)

📕 Low income 📕 Lower middle income 📕 Upper middle income 📕 High income

Population LMIC vs HIC (World Bank)

With lower price, better access (for the most needing) and increased market

Detection in 30 min

n 30 min 🛛 🏾 🏹 🗛

AMRDETEC**TOOL**

Prevalence of AMR

- Level of AMR prevalence indicates the need, better knowledge of prevalence guides testing
- Optimal prevalence for AMR DetecTool? 60-70% > Optimal Prev. > 10/20%

WHO Glass Portal

- Best source of information
- Data lacking for LMICs (compared to HICs)
- Higher levels of resistance in LMICs
- Challenge for countries where data not available (other sources needed)

LMIC, low-middle income countries; HIC, high-income countries

Proportion of patients with BSIs caused by E. coli resistant to 3rd generation cephalosporins by country income level (WHO Glass report 2021)

Typical blood workflow in LMICs

MRDETEC**TOOL**

MARKET ANALYSIS IN LMICs

Fit into the typical workflow

Typical blood workflow in LMICs

RDETEC**TOOL**

Type of lab

WHO Landscape of diagnostics against antibacterial resistance, gaps and priorities

MARKET ANALYSIS IN LMICs

*Some Level II hospitals in Middle-income countries have microbiology labs

Detection in 30 min

AMRDETEC**TOOL**

MARKET ANALYSIS IN LMICs

- Access to antibiotics
- AMR policies
- ICUs (higher need + possibility of treatment)

MRDETEC**TOOL**

Market analysis

Microbiologist in Egypt:

"We cannot afford resistance tests. Public system does invest in detecting resistances, so we wait for Antibiogram to know the effective antibiotic. Maybe if it was very cheap (5 Euros) we would purchase it... There are no AMR policies in place. The private hospitals care more about resistance, and they might be able to pay for it"

Market analysis

Microbiologist in Lebanon:

"If we had the test, we would use it to detect Carbapenemases. We are not very interested in ESBLs tests as we can use carbapenems. We do screen patients and the ICU and hospitalized high risk patients (mainly Carba). However, given the economic and political situation in Lebanon we cannot afford an extra cost. "

MARKET ANALYSIS IN LMICs

MENA region as an entry point

AMRDETEC**TOOL**

MARKET ANALYSIS IN LMICs

Pakistan, WHO-Glass

Pakistan

Salast Ca

Population 216,565,317 (2019)

Pakistan

Data submission						
specimen	Pathogen name	Number of tested patient	AST results	Age	Gender	Infection origin
BLOOD	Acinetobacter spp.	•	•	•	•	•
	E. coli	•	•	•	•	•
	K. pneumoniae	•	•	•	•	•
	S. aureus	•	•	•	•	•
	S. pneumoniae	•	•	•	•	•
	Salmonella spp.	•	•	•	•	•
GENITAL	N. gonorrhoeae	•	•	•	•	•
STOOL	Salmonella spp.	•	•	•	•	•
	Shigella spp.	•	•	•	•	•
URINE	E. coli	•	•	•	•	•
	K. pneumoniae	•	•	•	•	•

70-100% data reported <70% data reported

No data reported

Number of tested patients

Specimen t	Community origin	Hospital origin	Unknown origin
BLOOD	N.R	N.R	N.R
GENITAL	N.R	N.R	N.R
STOOL	N.R	N.R	N.R
URINE	N.R	N.R	N.R

N.R. : Not Reported

Data Overview

Number of infected patients

Specimen type	Pathogen name	Community origin	Hospital origin	Unknown origin
BLOOD	Acinetobacter spp.			989
	E. coli			775
	K. pneumoniae			41
	S. aureus			618
	S. pneumoniae			5,957
	Salmonella spp.			600
GENITAL	N. gonorrhoeae			
STOOL	Salmonella spp.			135
	Shigella spp.			74
URINE	E. coli			2,352
	K. pneumoniae			13,103

•

Detection in 30 min

MRDETEC**TOOL**

MARKET ANALYSIS IN LMICs

Detection in 30 min

AMRDETECTOOL

Event to enter the market

THIS IS YOUR PRESENTATION TITLE

THANK YOU FOR YOUR ATTENTION!

Detection in 30 min

EIT Health is supported by the EIT, a body of the European Union