
Impact of COVID-19 in stewardship and rapid diagnosis

Assistance Publique Hôpitaux de Paris, APHP

29.11.2021

Impact of COVID-19 in stewardship and rapid diagnosis

• Global COVID-19 Epidemic

Where are we standing now?

Total Cases Total Deaths Total Vaccine Doses Administered 7518754099

28-Day Cases 28-Day Deaths 201084 811512482

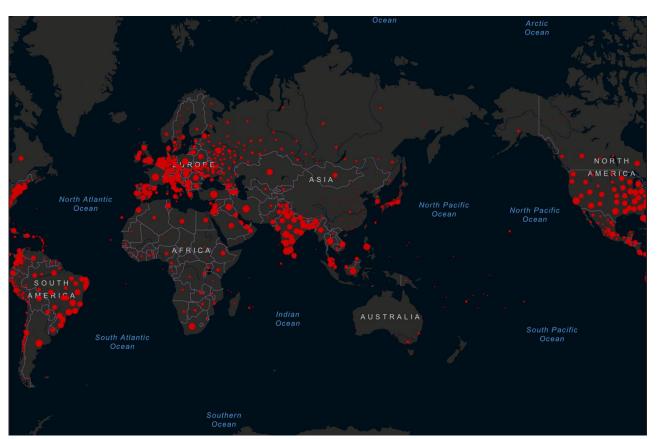
Germany

28-Day: 1050009 | 4634 Totals: 5580876 | 100139

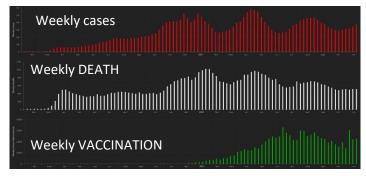
US

28-Day: **2318700 | 32476** Totals: **48092485 | 775397**

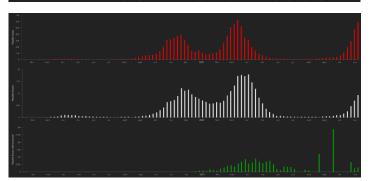
France


28-Day: **343966** | **1156** Totals: **7586187** | **119686**

Italy


28-Day: **202217** | **1461** Totals: **4954585** | **133415**

Spain


28-Day: 105167 | 615 Totals: 5111842 | 87904

https://coronavirus.jhu.edu/map.html

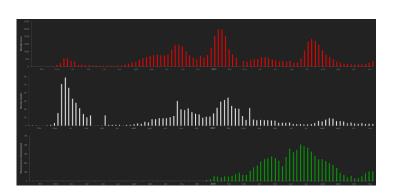
The epidemic curves

Worl d

NEW B.1.1.529

End 2020:Diagnostic testing is an essential tool against COVID-19, as there is not yet a vaccine or specific treatment.

FROM SOUTH AFRICA


2021: Vaccination is essential

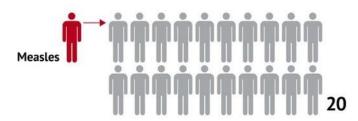
2022: Vaccination and anti-Covid-drugs

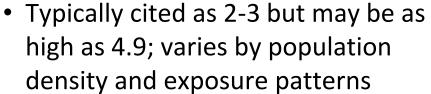
France

Spain

How contagious is the new coronavirus?

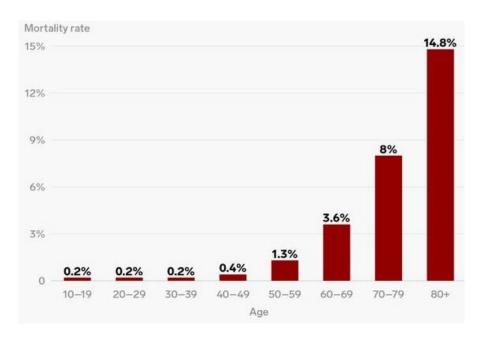
Source: Professor James McCaw and WHO


Scientists measure how contagious a virus is using 'reproduction numbers' - the likely number of people every sick person will infect assuming the whole population is susceptible.

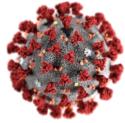




Contagiousity


Case Fatality rate

- COVID-19: 0.7 to 3.4% (>5% in Wuhan itself during peak)
 - Likely higher without access to healthcare, oxygen and ventilators
- Spanish Influenza 1918: >2.5%
 Mostly younger people
- Seasonal Influenza: 0.1-0.2%


Mortality rate

COVID-19 mortality rate by age

COVID-19 mortality rate by Comorbidities

- 10.5% cardiovascular disease,
- 7% diabetes,
- 6% each for chronic respiratory disease, hypertension, and cancer.
- Case fatality for patients who developed respiratory failure, septic shock, or multiple organ dysfunction was 49%.

Impact of COVID-19 in stewardship and rapid diagnosis

• Place of RDTs in pandemic

What can (and needs to be) done?

COVID

- Rapid identification to isolate patients
- Vaccination
- Drugs for severely ill patients
- **5.2 million** official deaths in 23 months of pandemic

AMR

- Search and isolate
- Novel approaches (immunotherapies)
- Novel antibiotics
- 10 million deaths by due to AMR if nothing is done by 2050

Diagnostics in the COVID-19 response

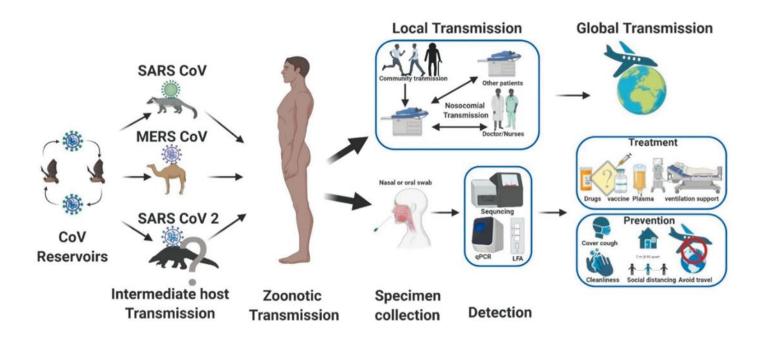
=> Diagnostic testing is a critical component of the COVID-19 response, as it can be used to:

- confirm infection in patients who fulfil COVID-19 clinical criteria
- rapidly screen suspected cases (especially in community settings)
- screen for infection in asymptomatic contacts of confirmed COVID-19 cases
- determine exposure (current and past) to the virus to understand the true extent of the outbreak, map the pandemic across countries and monitor trends.

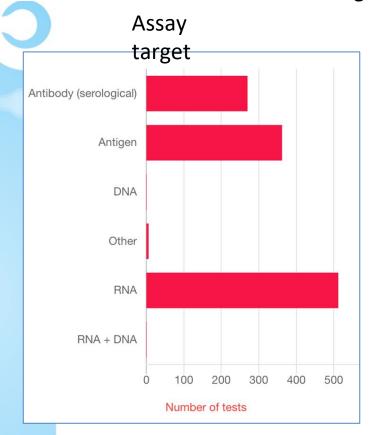
=> What is a rapid diagnostic test?

- Results in minutes to 1-2 hours
- Accurate, simple to use, low cost, easy to interpret, stable under extreme conditions, little or no processing, culturally acceptable
- Include "point of care" (for doctor) and "walk away" tests (home tests)

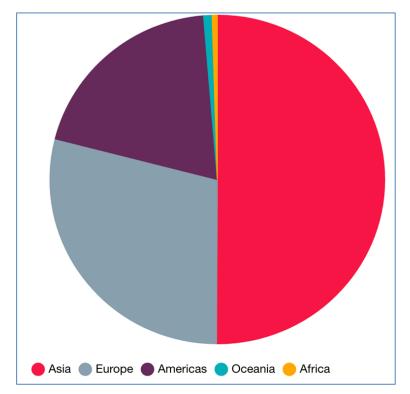
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS https://doi.org/10.1080/14737159.2021.1894930


REVIEW

Diagnosis for COVID-19: current status and future prospects


MD Alamgir Kabir 👵 a.b., Rajib Ahmed^c, Sheikh Muhammad Asher Iqbal a.b., Rasheduzzaman Chowdhury^d, Ramasamy Paulmurugan^c, Utkan Demirci^c and Waseem Asqhar^{a,b,e}

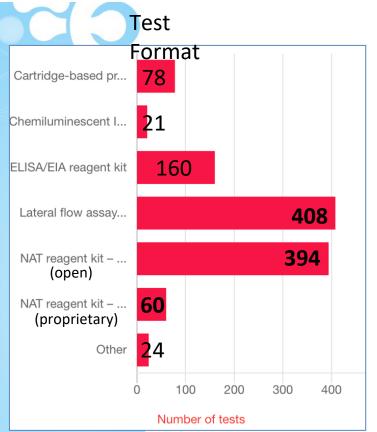
^aFlorida Atlantic University, Boca Raton, FL, USA; ^bCollege of Engineering and Computer Science, Boca Raton, FL, USA; ^cCanary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA; ^dUniversity of California, San Francisco, CA, USA; ^eDepartment of Biological Sciences (Courtesy Appointment, Florida Atlantic University, Boca Raton, FL, USA

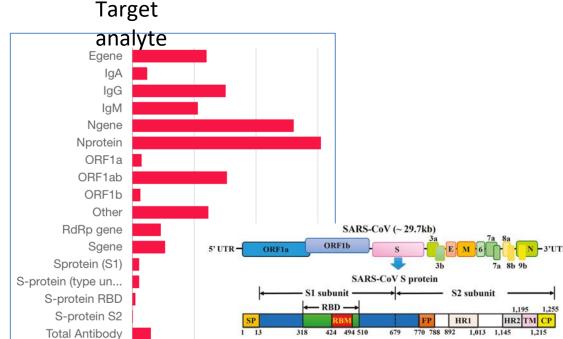


FIND, the global alliance for diagnostics, seeks to ensure equitable access to reliable diagnosis around the world.

Manufacturer region

FIND, the global alliance for diagnostics, seeks to ensure equitable access to reliable diagnosis around the world.

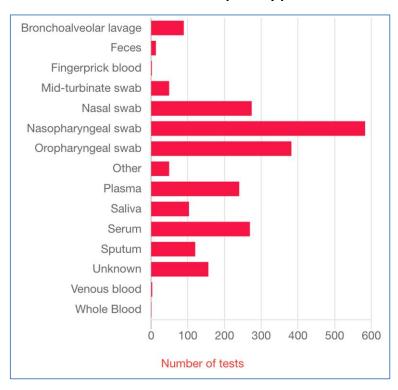

Unknown

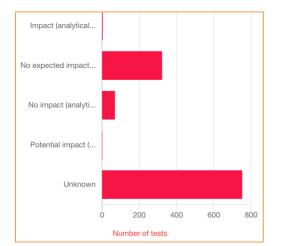

100

Number of tests

200

300





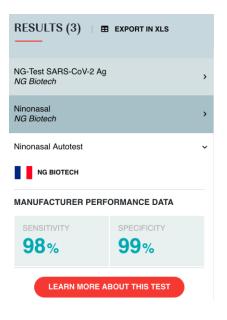
FIND, the global alliance for diagnostics, seeks to ensure equitable access to reliable diagnosis around the world.

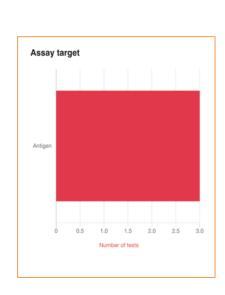
Validated sample types

Alpha variant

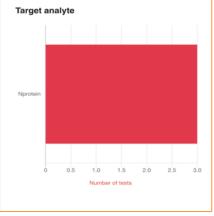
Beta variant

The gamma, delta, ... and now the Omicron.. A never ending story

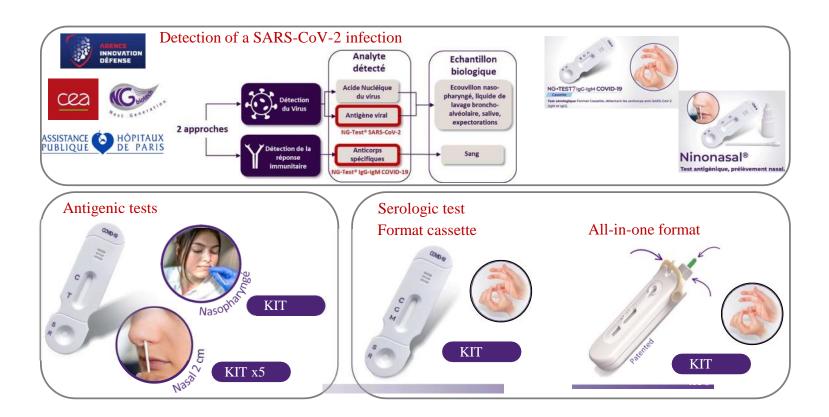



FILTER THE TEST LIST Search by Test Name Q APPLY FILTERS MANUFACTURER MG Biotech (3) REGION 6 Europe (3) COUNTRY 6 France (3) TYPE OF TECHNOLOGY Immunoassay (3) SELF-TESTING/SELF-COLLECTION Intended for professional use only

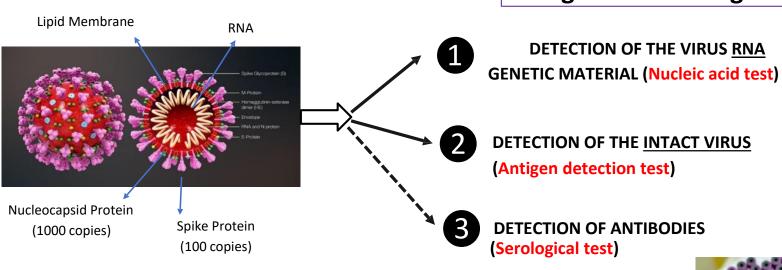

Intended for self-testing (version


available) (1)

COVID-diagnostics: another NG Biotech success story

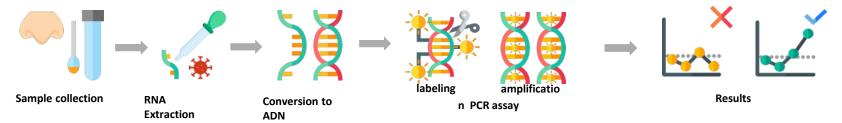


COVID-diagnostics: another NG Biotech success story



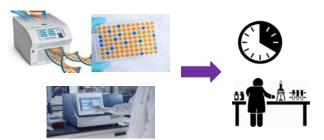
Diagnostics of covid-19

Diagnostics strategies



DETECTION OF THE VIRUS RNA GENETIC MATERIAL

Strategy based on the "Polymerase Chain Reaction" technique (PCR), LAMP, WGS


From a few DNA copies, and thanks to iterative cycles of, high yield of genetic material can be obtained, detected using fluorescent labels

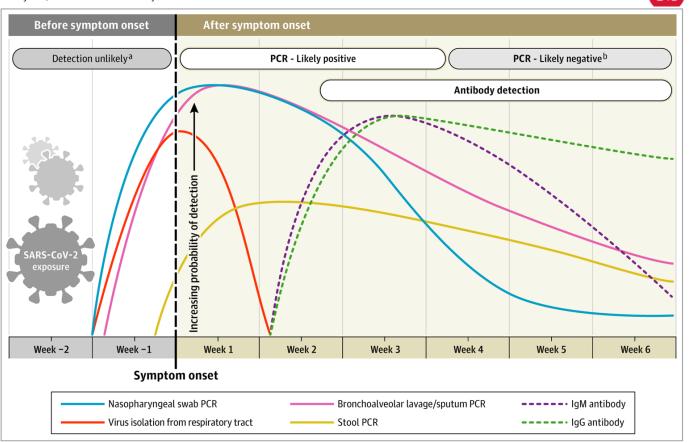
Nucleic Acid Amplification Tests (RT-

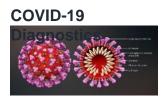
Advantages: well-established commercial technique, high sensitivity, specificity, high scalability to thousands of detection kits.

Limitations: time consuming (2-5 h), reproducibility, trained personnel, limited to specialized laboratories, complex instrumentation, price.

Time to Result and Lab requirements:

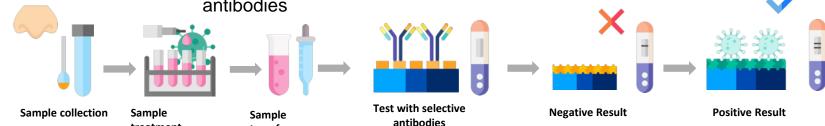
Main handicaps for massive population


testing


DETECTION OF THE VIRAL RNA: WHEN?

From: Interpreting Diagnostic Tests for SARS-CoV-2

JAMA. Published online May 06, 2020. doi:10.1001/jama.2020.8259



2

DETECTION OF THE <u>INTACT</u> <u>VIRUS</u>

(Antigen detection test)

Detection of the intact virus through the outer virus proteins (viral antigens) by using specific antibodies

Advantages: Rapid test (5-15 min), wellestablished technique for other diseases (lateral flow immunoassay), low cost, massive production, at the point-of-need.

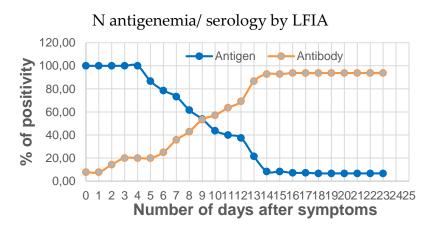
transfer

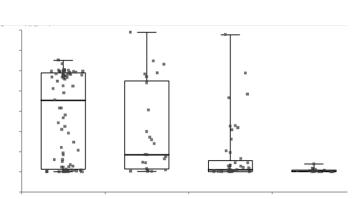
treatment

Limitations: limited sensitivity (false negative for low viral load), reproducibility issues between batches, qualitative results (YES/NO) but not the viral load.

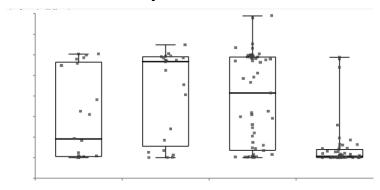
IDEAL TEST FOR A MASSIVE COVID-19 DETECTION

BUT.....

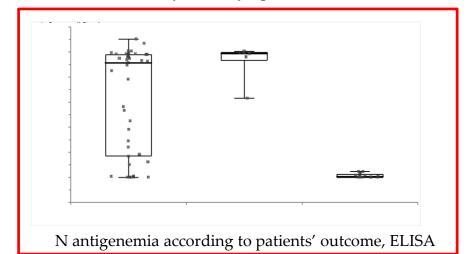

Evaluations, not always done properly
Lack of sensitivity, specificity
NP sampling difficult, nasal, saliva, SERUM?


Rapid immunochromatographic point-of-care diagnostic devices for detection of SARS CoV-2 antigens in NP and serum samples,

Ag detection in	(Ct<20)	(20≦Ct<25)	(25≦Ct<30)	(30≦Ct)	All RT-PCR+ NP samples	Infectious samples ^a (Ct≦ 33)
NP	100% n =25 (83.4-100)	98% n=48 (87.5-99.9)	82% n=57 (69.6-90.8)	36% n=53 (23.5-50.3)	75 % n=183 (68-81)	86% n=160 (79-90.5)
Serum (LFIA)	89% n=9 (50.7-99.4)	67% n=9 (30.9-99.4)	94% n=16 (67.7-99.7)	27% n=22 (11.6-50.4)	59% n=56 (45-72)	76% n=38 (59.4-88)
Serum (ELISA)	89% n=9 (68-100)	78% n=9 (50-100)	88% n=16 (60.4-97.8)	32% n=22 (14.7-54.9)	63% n=56 (50-75)	84% n=38 (72-96)

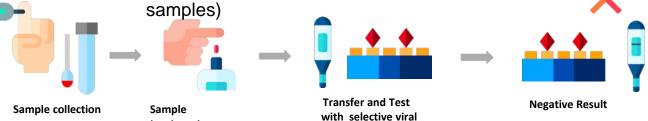

(S. Oueslati, submitted)

Rapid immunochromatographic point-of-care diagnostic devices for detection of SARS CoV-2 antigens in NP and serum samples,



Days from RT-PCR diagnosis

Days from symptoms onset



DETECTION OF ANTIBODIES (SEROLOGICAL TEST)

INDIRECTDETECTION

Detection of antibodies produced by the infected person during the disease (detection of antibodies present in blood/serum samples)

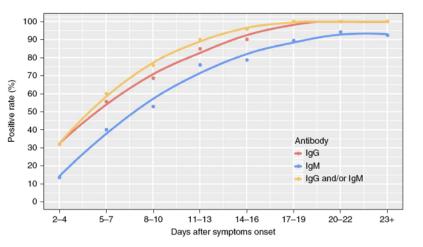
antigens

Positive Result

Advantages: Rapid test (5-15 min), wellestablished technique, easy sample extraction, non-infective sample, low cost, massive production, at the point-of- need, required selectivity.

treatment

Limitations: limited sensitivity (false negative and false positive), qualitative results (YES/NO) but not the antibody levels, variability of the immunoresponse in the population, not indicated for infection diagnosis.


- Most of the <u>Rapid test</u> for serological analysis have NOT the required level of sensitivity (false positive and false negative)
- There is no information yet about the duration and the quality of the immunity
- Immunity Passport is NOT possible now

Positivity of anti-SARS-CoV-2 serologies

Antibody responses to SARS-CoV-2 in patients with COVID-19

Lang QX et al. Nature Med 2020

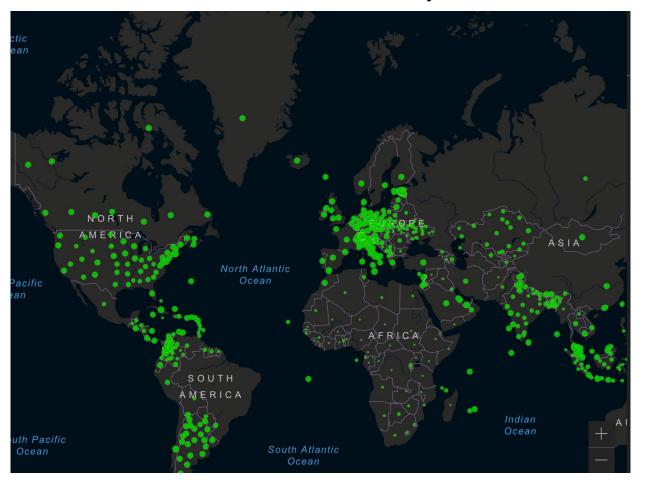
- 285 patients COVID +
- Technic ELISA
- 100% with Ig anti-SARS-CoV-2 et 19 days post-symptôms

Dortet L et al. Emerg Microbes Infect. 2020)

- 101 patients COVID +
- LFIA
- > 95% of patients with IgMand IgG anti-SARS-CoV 2 at 16 days post-symptoms (100% at 23 days)

We have tested for you

		1		T * * * * * * * * * * * * * * * * * * *				ı	
Tests sérologiques				Sensibilité selon la date de debut des symptômes					
		Nombre total de sérums testés	s no rétab	Nombre total de sérums testés pour évaluer la sensibilité (sérums de patients COVID +)	JO-9	J10-14	J>14	Spécificité	Nombre de sérums testés pour évaluer la spécificité (sérums de patients COVID -)
	NG-Biotech (IgM/IgG)	494	0	247	42,0% (42/100)	75,0% (63/84)	93,7% (59/63)	99,2% (96,8%-99,9%)	247
	Autobio (IgM/IgG)	496	0	247	52,0% (52/100)	87,1% (74/85)	90,3% (56/62)	94,4% (90,5%-96,8%)	249
	Avioq (IgM/IgG)	482	1	243	46,5% (47/101)	76,5% (62/81)	91,8% (56/61)	94,5% (90,6%-97,0%)	238
	^a Nadal (IgM/IgG)	449	0	226	56,8% (50/88)	89,9% (71/79)	91,5% (54/59)	99,1% (96,5% - 99,8%)	223
Tests rapides	Finecare (Ac Totaux)	498	0	249	55,4% (56/101)	92,9% (79/85)	95,2% (60/63)	98,4% (95,7% - 99,5%)	249
rests rapides	Wondfo (Ac Totaux)	498	0	249	55,4% (56/101)	92,9% (79/85)	92,1% (58/63)	96,4% (93,0% - 99,7%)	249
	^a Biosynex (IgM/IgG)	198	0	97	58,0% (18/31)	88,6% (31/35)	87,1% (27/31)	98,0% (92,3%-99,7%)	101
	Innovita (IgM/IgG)	497	0	249	31,7% (32/101)	65,9% (56/85)	80,1% (51/63)	98,8% (96,2%-99,7%)	248
	Biolidics (IgM/IgG)	237	0	157	35,7% (25/70)	78,8% (41/52)	93,3% (42/45)	92,5% (83,8%-96,9%)	80
	Vedal Lab (IgM/IgG)	483	3	238	55,7% (54/97)	81,3% (65/80)	88,5% (54/61)	75,6% (69,6%-80,8%)	242
	^a Abbott (Ac totaux)	279	0	230	41,0% (39/95)	73,1% (57/78)	84,2% (48/57)	100% (90,9%-100%)	49 ^b
ELISA	IdVet (Ac totaux)	474	0	246	26,0% (26/100)	72,9% (62/85)	80,3% (49/61)	100% (97,9%-100%)	228
	Orgentec (IgM/IgG)	493	0	247	48,5% (48/99)	77,4% (65/84)	88,9% (56/63)	98,8% (96,2%-99,7%)	246


Evaluating 10 Commercially Available SARS-CoV-2 Rapid Serological Tests by Use of the STARD (Standards for Reporting of Diagnostic Accuracy Studies) Method

JCM, 2020

Laurent Dortet, * Lean-Baptiste Ronat, * Christelle Vauloup-Fellous, * Céline Langendorf, * David-Alexis Mendels, * Cécile Emeraud, * Saoussen Oueslati, * Delphine Girlich, * Anthony Chauvin, * Ali Afdjei, * Sandrine Bernabeu, * Samuel Le Pape, * Rim Kallala, * Alice Rochard, * Celine Verstuyft, * Nicolas Fortineau, * Anne-Marie Roque-Afonso, * Thierry Naas* * Danie Marie Roque * Onther Roque

Limites fixées par la HAS					
	Sensibilité	Spécificité			
Acceptable	95%-100% 90%-95%	98%-100%			
Non conforme	85%-90%	95%-98%			
Non comornic	80-85%	90%-95%			
Désastreux	<80%	<90%			

The solution: Global vaccination, but room to improve

Lessons from the COVID-19 pandemic: almost everything has changed, all around the world.

- Our lifes
- our economies
- Our inter human relationships
- Our habits
- Loss of common sens to many people, and of clinical sens to some doctors
- Revealed difficulties and weekenesses
 - Of our societies
 - Of our administrations
 - Of our health systems
 - ▶ At the hospital
 - ▶ In the community
 - ▶ At the level of training of our doctors

Lessons from the COVID-19 pandemic: almost everything has changed, all around the world.

Positive points

- Knowledge on diseases has never evolved so fast
- ▶ All the publications on preprint servers and open access
- ▶ Unprecented developement of Rapid diagnostics, and their use
- ► Health has no price anymore for COVID (« What ever it cost», E. Macron)

Negative points

- ▶ The articles, are not read anymore: mostly title and conclusions
- ► Scientific results presented in TV, by self declared experts, who comment the data without knowledge
- ► The after crisis should benefit from the lessons learned? (societies, living together, medical and diagnostics)?

Will AMR benefit from the pandemic?

- Will mask wearing and hydroalcoholic solutions have an impact one AMR spread?
- Restrictions in trips: reduction of 25% of CPEs (mostly imported cases, F-NRC)
- Increased usage of antibiotics for intubated CODID patients: consequence on AMR?
- Will RDT have the same boost as anti CODID-RDTs? Reimbursment accelerated?

- We have to keep in mind that AMR may lead to 10 million death if is nothing is done:

⇒ It is time to act, and as for COVID, diagnostics is in the heart of any stratedy against AMR (search and isolate strategy and antibiotic stewardship)

And not to forget: social distancing, and

hand higene

THANK YOU FOR YOUR ATTENTION!

